JUDISHARE: Judicious Resource Allocation
for QoS-based Services in
Shared Wireless Sensor Networks

Victor Cionca, Ramona Marfievici, Roland Katona, Dirk Pesch
Nimbus Research Centre, Cork Institute of Technology, Cork, Ireland
{firstname.lastname } @cit.ie, Roland.Katona@mycit.ie

Abstract—In shared wireless sensor networks (WSNs), multiple
users request access to sensing resources, often with varying
sampling rates and QoS requirements. To accommodate a request,
appropriate sensing, computing and communication resources
need to be allocated across the network. Traditionally, each
request is mapped to a dedicated set of resources, even when
the requests are similar. The need to reduce resource usage
has led to data virtualization techniques that focus primarily
on merging the requests ignoring the QoS requirements. In this
paper, we present a QoS-aware resource allocation approach,
JUDISHARE, that merges requests, where possible, if they are
compatible in their requirements, providing judicious reuse of
both sensing and communication resources through a mixture of
data virtualization and Virtual Network Embedding (VNE). We
show that JUDISHARE respects QoS requirements and reduces
resource usage to up to 60%. This, in turn, allows up to 50%
more requests to be accommodated onto the network, even when
the network resources are fully utilized.

I. INTRODUCTION

Shared Wireless Sensor Networks (WSNs) [1] enable multi-
ple applications or requests to be concurrently accommodated
on the network, often with differing quality of service (QoS)
requirements (e.g., reliability, latency). Compared to single-
purpose deployments, they provide increased flexibility and can
reduce redundancy in deployed resources.

Supporting multiple QoS aware requests on the network is
equivalent with building flows with constraints to satisfy the
QoS requirements. Here a flow is an end-to-end communication
path from sensor source to sink. The optimal allocation of
flows is commonly performed by a Virtual Network Embedding
(VNE) algorithm [2], whose objective is to maximise the num-
ber of accepted requests while minimising resource cost. One
problem is that VNE handles all the requests distinctly even
when they target the same data source, and allocates distinct
flows and resources. Because the communication capacity of
the WSN is limited by the capacity of the sink, the number
of requests that can be accepted is also limited [3]. If similar
requests could be merged to use the same flow, it would
reduce resource usage. Data virtualization can achieve this [4],
but does not consider QoS. What we propose in this paper
is an algorithm that judiciously uses the available network
resources and respects QoS constraints, by merging requests
not only based on their requested data source but also on
the QoS requirements. Where possible, new requests will be

accommodated onto existing flows by carefully modifying the
flow properties so as to not violate QoS requirements. The goal
is to reduce the resources needed to support a set of requests.
This frees up network capacity so that additional requests can
be accepted, which may lead to increased revenue [3].

Motivating scenario. The motivation for the work described
here emerges from our ongoing project Service-centric net-
works for URban Feedback systems (SURF) [5]. One of the
project’s goals is to devise an approach for multi-purpose,
multi-user, WSNs that can concurrently run multiple sensing
applications with varying QoS requirements while optimizing
resource utilization and network lifetime. To give an example,
consider an environment monitoring WSN deployed throughout
a city. Researchers interested in the relationship between dis-
ease and urban environment need a sampling rate of the order of
days with best effort communication; an environmental agency
interested in monitoring the air quality demands a sampling
rate of the order of hours and high reliability; the city council
interested in the link between traffic and air pollutants runs
with periods of minutes with high reliability, while in case of a
sudden air contamination event, the city council can ask for a
change in sampling rate to tens of seconds with high reliability
and low latencys; finally, a private company offering services for
selecting the least polluted route wants to run a service with
sampling in the tens of seconds with high reliability and low
latency. These requests and their QoS requirements have to be
accommodated by the deployed WSN.

Contribution. We propose JUDISHARE, the first approach,
to the best of our knowledge, that performs QoS-aware data
virtualization, merging not only the sensing data, but also the
communication flows of multiple compatible data requests. We
demonstrate through simulation that JUDISHARE reduces the
utilization of network resources and can accept more requests
than if only application embedding is performed. Furthermore,
we conduct experiments that show that when merging with
JUDISHARE, the end-to-end reliability requirements of WSN
applications can be maintained at rates as high as 100pkt/s.

The remainder of the paper is organized as follows. Sec-
tion II surveys the related work. We present our approach in
Section III, and its performance evaluation in Section IV. We
conclude in Section V.

II. RELATED WORK

Several works have focused on solutions for efficient shar-
ing of WSNs as a means of reducing network traffic and
energy consumption [1], [4], [6]-[8]. TinyDB [6] is a query
processing system where requests are submitted to the sink
as SQL queries. To reduce the power consumption, TinyDB
performs query optimization at the sink as well as on the node.
TinyDB addresses single queries (sequential query handling).
Miiller et. al. [1] consider a limited form of multi-user sharing
where different users request data at different data rates from
different sensors. The proposed system merges user queries
into a network query to be executed by the nodes. A chain
of operators process the flow of tuples from the query while
adapting the data rate and filtering out tuples and attributes not
requested by the user queries. By using the greatest common
divisor of the sampling periods associated with user queries,
the network operates more efficiently while still providing
all requested data. The two-tier multiple query optimization
system from [7], rewrites a set of queries into an optimized
set at the first tier and shares sensor readings among similar
queries over time and space at the second tier. A multi-query
optimization approach is proposed by [4] but only for queries
requesting the same packet rate from the sensor nodes. Task-
Cruncher [8] builds an interval-coverage graph for overlapping
sampling requirements and models tasks as data flow graphs
enabling the dynamic optimization of the graph structure upon
tasks entering or leaving the system. All these works focus
on efficient sharing of resources while minimising network
traffic and improving energy consumption, but do not consider
QoS requirements. JUDISHARE is an approach to preserve the
various QoS requirements while sharing resources efficiently.

III. JUDISHARE APPROACH

The WSNs that we consider for JUDISHARE are large net-
works with heterogeneous sensing capabilities that concurrently
support multiple QoS-aware data requests for distinct data
sources. Users submit data requests that specify the data source
as a node location or address, with additional requirements for
sensor sampling rate and QoS, expressed in terms of reliability
and latency. In response, sensing and computation resources are
reserved on the source nodes and a communication flow con-
sisting of communication links is allocated as a path between
the data source and the network sink, such that the requested
requirements are respected.

Setting up and maintaining concurrent data flows with end-
to-end QoS requirements requires a global view of the network
state to make optimal network-wide decisions. As such, we
adopt a centralised network control model, where the controller
maintains a complete model of the network state, i.e., the con-
nectivity map and link quality between nodes, using SMOG [9],
a solution developed in our group. Based on the network state,
the controller decides which and how many user requests are
accepted on the network, and which resources are used.

JUDISHARE works only with communication resources,
which must be derived from the user requirements. First

it determines the requested data rate, based on the given
sampling rate and a known application payload size. The
data rate is then converted into communication quota, which
represents a percentage of the maximum data rate achievable
on a link. Considering the use of a time-slotted deterministic
MAC (Medium Access Control) protocoll, the maximum link
data rate (which is the 100% communication quota) can be
derived from the maximum data transmissible in a slot. After
extracting the requested communication quota for each user
request, JUDISHARE will try to merge new user requests
onto others that are already in the network and have similar
demands. To reserve resources in the network in an optimal,
QoS constrained, manner, JUDISHARE makes use of a Virtual
Network Embedding (VNE) algorithm, which is discussed next.

A. Virtual Network Embedding

Virtual Network Embedding (VNE) is an algorithm for
resource allocation in virtualized enterprise networks [2], that
was adapted in our previous work [3] to WSNs. It is used here
to map the JUDISHARE user requests to network resources.
The input user requests are represented as a set of source and
destination node pairs® in the network topology, with associated
node and communication requirements such as location, band-
width or QoS as problem constraints. The network topology has
computing and link capacity constraints that are obtained with
the SMOG mechanism [9] discussed above. The VNE algorithm
determines, for each input request, a communication flow (i.e.,
network path) between the source and destination nodes that
satisfies the problem constraints. The objective of the VNE is
to maximise the number of requests admitted in the network
while minimising the amount of resources allocated. Note that
the algorithm only provides a solution to network resources (as
in layer three routing flows), but not link resources (as in layer
two Medium Access Control). However, the use of the upper-
bounded communication quota ensures a feasible allocation
at the link layer. This greatly reduces the complexity of the
VNE problem from a joint routing and scheduling problem to
a constrained multi-commodity routing problem.

In this work the VNE algorithm uses offline request pro-
cessing, which means that requests are received and processed
in batches. It is implemented with a greedy heuristic similar
to that in [11], where the input requests are first sorted in
non-decreasing order of their requested communication quota,
then, in turn, embedded on the network using a shortest path
algorithm. The latter minimises the number of hops allocated
subject to a maximum bound on link capacity (100% quota)
and minimum bound on end-to-end reliability (specified by
the user). The link capacity constraint must take into account
and prevent internal radio interference which occurs naturally
in a WSN but does not occur in the traditional wired VNE.
To this extent, allocating communication quota over a link
also affects all neighbouring links that interfere with it. So

'A deterministic protocol is required to achieve QoS requirements [10].
2The source is the sensing source specified in the user request. The
destination is the network sink.

instead of having 100% quota per link as in wired VNE,
WSN VNE allocates a maximum of 100% quota for the entire
interference neighbourhood of a link. This has two effects.
First, it increases the complexity of the problem, compared
to wired VNE. Second, it greatly reduces the total amount
of communication capacity that a network can accommodate.
However, because JUDISHARE merges requests, it manages to
overcome this limitation.

B. Judicious Resource Allocation

Concept. The benefits of managing a multi-tenant WSN infras-
tructure as described in this paper depend on the number of user
requests serviced and the amount of network resources used to
service those requests. Therefore the objective is to maximise
the user request admission ratio while minimising the amount
of allocated network resources, specifically, communication
quota. The VNE algorithm considers that all user requests are
distinct. Even when requests indicate the same sensing source,
the resulting flows start and end at common nodes, but the
communication resources allocated are distinct. Each flow has
its own, private, quota on the allocated network links. If two
flows intersect and share links the amount of quota that must
be reserved on those shared links is the sum of the quotas
requested by each flow. However, if the QoS requirements of
the user requests permit, multiple requests could all make use
of the same communication resources. Consider two requests,
Ui and U, for a sensor on a node that is one hop away
from the sink. The requested packet rates are P = 2pkt/s
and P, = 1pkt/s and the minimum reliability R; = Ra.
Assuming an application payload of 20Bps and a maximum
link rate of 100Bps (hypothetical example) the quota requested
is @1 = 40% and Q2 = 20%. The VNE algorithm would
allocate two flows over the link, one with 40% quota, one with
20% quota, so a total of 60% quota that corresponds to 3P,
packet rate. Instead of allocating total resources corresponding
to 3P, packet rate at reliability R;, we observe that both user
requests can instead be serviced by a single flow with packet
rate 2P, and reliability R;. At the sink, the data for Uy can
be obtained by down-sampling the incoming flow and taking
every second sample. So instead of allocating 60% quota only
40% would be allocated. This saves 20% network quota on that
link that could be used to accommodate a third user request,
and therefore increase revenue.

As already discussed in Section II, merging data requests
to reduce resource consumption has been explored before in
the context of data virtualization in [7]. However, this body
of work does not consider the QoS requirements of the user
requests. If user requests specify QoS requirements there are
situations when they cannot be merged. If in the above example
U, that requests 1pkt/s needs higher reliability than Uq, it
cannot be serviced anymore by the flow of U; because that
might lose more packets than allowed by Us. In this case the
two user requests cannot be merged directly in the common
data virtualization manner. However with JUDISHARE we show
that there are ways of merging flows that can satisfy QoS
requirements.

query request received

E’,arch registry for existing active services matching requea

compute
merged packet rate

merged packet rate

higher merged
packet rate

& QoS match

same flow
reconfig service

try increase
quota on flow

success
check max flow QoS
matches QoS

no match

new
service agent

cannot increase

compute
tightest QoS

match

replace flow
(merged_packetrate, tight QoS)

new service agent
add agents with
same ApplD as siblings

mark for
reconfig

Fig. 1: JUDISHARE approach.

cannot
",
replace flow
success

new flow

required

Operation. JUDISHARE works with a VNE algorithm and its
goal is to reduce, by merging, the number of input user requests
that the VNE considers, resulting in the allocation of fewer
communication flows in the network, and therefore in reduced
resource consumption. The algorithm is executed when the
central controller receives a request. If there are no flows in
the network from the requested source node, the new flow is
embedded using the VNE algorithm. Otherwise JUDISHARE
processes the request, following the flow-chart in Fig. 1.

JUDISHARE tries to merge new user requests into existing
flows, by merging the packet rate and the QoS of the two.
Packet rates, expressed as packets per time, are merged by
computing their Least Common Multiple (LCM), which is the
inverse of the method employed in [1], where packet periods
and their Greatest Common Divisor are used. If the two packet
rates are co-primes, the merged packet rate would equal the
product of the rates. However, the maximum that VNE allocates
is the sum of the rates, so we set that as the maximum
value. If the merged rate is greater than the sum of the rates
JUDISHARE will treat the two requests as distinct and allocate
them individually using VNE. Using LCM to find the merged
packet rate guarantees that the merged flow can be used to serve
all user requests associated with it, from a packet rate point
of view. The QoS is expressed as end-to-end reliability (i.e.,
packet delivery ratio PDR) and latency. An existing flow A can
support a new request B’s QoS requirements if the reliability
of A is higher than that of B and the latency of A is lower than
that of B. Similarly, two QoS values can be merged, creating

a tight QoS, with the highest reliability and lowest latency.
We consider three cases. i) In the simplest case, the merged
packet rate is lower than the existing one, QoS is supported, and
the new request can be merged onto the existing flow without
making any changes. i) If the merged packet rate is higher
than the existing one, the algorithm tries to increase the rate of
the existing flow. It does this for all links of the flow as well
as their interfering links. If the increase does not violate the
maximum link capacity on all affected links and the QoS of
the existing flow supports the requested QoS, the two can be
merged. This case relies on the assumption that increasing the
packet rate on a flow does not affect its QoS. In Section IV-B
we show this to be essentially the case. #i7) If the flows cannot
be merged, JUDISHARE tries to replace the existing flow with
a new one that has the merged packet rate and the right QoS.
This is achieved by running the VNE algorithm, using all flows
already embedded in the network as an input, except the flow
under consideration, which is replaced with the new merged
flow. If this also fails, a new flow is defined for the user request.

IV. EVALUATION

We first present results of an extensive simulation campaign
demonstrating JUDISHARE’s performance in accommodating a
set of requests on a shared WSN, using as benchmark a VNE-
only solution. Secondly, we ran experiments to validate that
merging flows and an increase in the packet rate does not
negatively impact communication QoS, i.e., reliability.

A. Processing Requests

The behaviour of JUDISHARE when processing requests
is compared with a VNE-only solution. The performance is
measured in terms of the number of user requests supported and
the number of flows embedded onto the network. For VNE, the
two values are identical, however JUDISHARE is able to support
more requests over the embedded flows, by merging requests
and reusing flows. The performance is also quantified in terms
of communication quota, supported and embedded, as well as
energy consumption.

Experimental setup. The evaluation was conducted by simu-
lating the allocation of batches of user requests over a network
of 50 nodes. We assumed only one type of sensor in the
network, generating packets of 50B for each sample, and all
packets are sent to the network sink (no data aggregation used).
For the communication quota, we considered a maximum link
data rate of 624Bps, obtained experimentally using ContikiOS
on the TelosB nodes without a MAC and in-line with results
from [12]. Various sizes for the request batches were evaluated,
conducting 100 runs for each size. In each run, the network
topology was randomised to eliminate topology bias created
by the relative position of the source node and the sink in
the topology. The request parameters were also varied between
runs. The source node identifier was randomly sampled from
the network nodes. Packet rate was uniformly sampled from the
set {1pkt/s, 1pkt/5s, 1pkt/10s, 1pkt/30s, 1pkt/min, 1pkt/10min,
1pkt/30min, 1pkt/hour}. The user requested end-to-end reliabil-
ity was generated by sampling a normal distribution with mean

50 T T T : :
45 b JudiShare supported
JudiShare embedded

40| VNE supported Z
®n35r

B30t

o
0)25'

o o0}t
15

10+

5 i i i i i i i i
5 10 15 20 25 30 35 40 45 50
Received Requests
Fig. 2: Number of supported and embedded requests when the

requested location is random.

0.9 and standard deviation 0.1, taking only values less than 1.
Latency was uniformly sampled from [100...5000] ms.

Results. Fig. 2 shows the improvement that JUDISHARE pro-
vides over a VNE-only solution. Since the source node of a
request is randomly sampled the probability of a specific node
being requested is always the same (1/50). However, with the
number of nodes constant, as the number of user requests
increases, the probability of source nodes being requested
multiple times also increases. Therefore, as the number of user
requests increases JUDISHARE is able to merge more and more
requests embedding fewer flows into the network and consum-
ing fewer network resources. This way more network capacity
remains available after the embedding and that capacity can be
used to accommodate additional user requests. Fig. 2 shows that
JUDISHARE embeds roughly 33% less flows than the VNE-only
solution. The figure also shows that JUDISHARE can support
4% more user requests than the VNE-only solution however
this is not necessarily meaningful because a flow requesting
1% quota is easier to support than one requesting 10%. For
this reason we also analysed the amount of communication
quota that can be supported by the two solutions. Furthermore,
we wanted to increase the demand on the network, because
the linear trend shown by the supported requests with VNE
and JUDISHARE in Fig. 2 did not satisfy the expectation. In
the considered network setup the single sink limits the total
data rate of the network to the maximum data rate at the sink.
While the network sink provides 100% quota, paths longer
than one hop see that value halved, or more, due to intra-flow
interference. As all user requests require data collection at the
sink, neither VNE-only nor JUDISHARE are able to allocate
more capacity network-wide than the maximum capacity at the
sink. Therefore, the total accepted communication quota in the
network should have an asymptotic trend, not a linear one.
We stressed the maximum capacity of the network in two
ways. Firstly, we increased the number of user requests from 55
to 95 in increments of 10; to increase the impact, the packet rate
was also slightly increased, not considering packet rates of less
than 1pkt/min. Using this approach, the total quota supported in
the network was measured, and the results are shown in Fig. 3.
It is clear that the VNE-only solution reaches a maximum value
of around 50% for the total embedded quota. VNE is therefore
subject to the maximum network capacity as explained above.

120

T T T T T
HE VNE-only HEE JudiShare
100 | —

80 [1

60 F.7T -

ol W . |

Supported quota (%)

20 | =

55 65 75 85 95
Received requests
Fig. 3: Average supported quota in the network. Error bars show
min and max values.

ot

T T T T T T T T T
B VNE B Judi-emb BB Judi-sup

Number of flows

5 10 15 20 25 30 35 40 45 50
Received requests

Fig. 4: Request processing results at high packet rates.

JUDISHARE is subject to the same limitation in terms of
embedded flows. However, by reusing flows, the quota that can
be supported can be further increased, and, as the figure shows,
the impact is substantial, with JUDISHARE supporting over
100% quota in some extreme cases. Furthermore, JUDISHARE
maintains an increasing trend for supported quota as the number
of requests increases.

Secondly, we stressed the maximum network capacity by
increasing the requested sampling rate and in turn the packet
rate. Fig. 4 shows the result of processing the input requests
where the packet rate is sampled uniformly from {1pkt/s,
1pkt/0.2s, 1pkt/0.1s, 1pkt/0.04s, 1pkt/0.02s}. The results are
very different because at 1pkt/0.1s the requested quota is
already 80%, which takes up most of the network capacity.
Consequently, both JUDISHARE and the VNE-only solution
manage on average to support only a single request.

B. Impact on Energy Consumption

Using the setup from Section IV-A, we further studied the
impact that JUDISHARE has on energy consumption. Fig. 5 de-
picts the ratio of total energy consumption between JUDISHARE
and the VNE-only solution, along with similar ratios for the
average flow length and the total allocated quota. The total en-
ergy consumption is computed as > ;,.x.c 10, E(quota(link))
for all flows embedded. The figure shows the following. Before
reaching the maximum network capacity (left side, as in Fig. 2)
JUDISHARE allocates more quota and consumes more energy
than VNE, in fact quota and energy are highly correlated.
The two solutions allocate flows of roughly the same length;
JUDISHARE will in most cases reuse existing flows embedded
with VNE, but in some cases it will replace existing flows with
new ones that have merged packet rate and tight QoS (as in case

3.5 T T T T T

3.0 — Energy — Fldw length — Quota
= I
2.5 | - - | -
L 20 n o | E
= = T =
K 15 \Ml _
- I _
OF eee*toeo_ » Tz 7 |
1.0 b el o e
0.5 |- = = |]
0.0 -, = I 1 I I
0 20 40 60 80 100

Received requests
Fig. 5: Resource consumption ratio, JUDISHARE over VNE.
The left side of the dotted line shows an under-utilized network.
On the right side it is fully utilized.

119 from Section III-B), which will be longer and thus increase
the ratio to > 1. Once the network capacity limit is reached
(right side, as in Fig. 3), as expected, both solutions reach the
same embedded quota, therefore the energy consumption will
be very similar (ratio € [0.98,1.02]).

C. Impact on End-to-End Reliability

As JUDISHARE merges communication flows under the

assumption that the QoS characteristics of the flow, mainly
reliability, are unaffected when the packet rate is increased,
we wanted to verify if this was correct as it is well known that
higher packet rates can impact PDR negatively [13].
Experimental setup. We used a small-scale setup with two
TelosB nodes placed indoors at 25 m apart and TRIDENT [14],
a tool for connectivity assessment. The experiment was divided
into rounds, during which each node sent 200 packets. For
each inter-packet interval (IPT): {1000, 500, 250, 125, 100, 50,
25, 20, 15, 10, 5} ms we interleaved rounds in which nodes
were communicating at {0, —1, —8, —10, —13, —15} dBm
corresponding to power levels {31, 28, 14, 11, 9, 7} of the
TelosB. We report results from 66 rounds.
Results. Fig. 6 illustrates the extent to which the PDR of a
link can be affected by the packet rate. It clearly shows that
the range of PDR variation is less dramatic at high transmit
powers with lower bounds at 99% at the lowest IPI, i.e., 5 ms.
On the other hand, for low transmit powers, the PDR is affected
more by the decrease of the IPI, dropping to 98.5% at a 10 ms
IPI and 93% in the worst case scenario at 5 ms IPL

100 f -
~ 98¢
&2
P31
T 96} P28 | 1
o P14
P11
94 P9
P7
92 b :
4 10 100 1,000
IPI (ms)

Fig. 6: PDR of a link as the packet rate (IPI) increases.

100 | x
95 SN
~ 90 .
& g5t 1
o I P31] |
g 80 P28
s P14|
P11
70r P9 | 1
65 | P7 | |
60 : :
4 10 100 1,000
IPI (ms)
100 | - -
99.95 | 1
<
— 999} 1
& P31
[N P28
I P14| |
99.85 .5
P9
99.8 | P7 | |
4 10 100 1,000
IPI (ms)

Fig. 7: End-to-end PDR of a 6-link path with no (top) and two
(bottom) retransmissions as IPI increases.

Building on these results, we define R p as the end-to-end re-
liability of path P, computed as the product of per-hop reliabili-
ties R;. R; of alink /is givenby R; = 1—(1 — PDR)N+1 [15],
where PDR is the reliability of the link and NV represents the
number of maximum retransmissions per packet. For a network
path composed of 6 links with characteristics reported above,
we computed Rp with no and with two retransmissions, as
depicted in Fig. 7. JUDISHARE considers two retransmissions
since this is the default value used by the Contiki OS. With
two retransmissions, for all tested power levels, R; drops as
low as 93%, which translates into R p decreasing to 99.79%.
When there are no retransmissions, at high powers the decrease
of R; to 94% does not have a dramatic impact on the Rp. In
the worst case scenario, at the lowest power and the highest
possible packet rate supported by a TelosB node, i.e., IPI
of 5 ms, Rp drops to 656% when no retransmissions are in
place. These encouraging results show that JUDISHARE would
succeed in satisfying the reliability requirements for rates as
high as 100pkt/s.

V. CONCLUSIONS

In shared WSNs, the goal of the infrastructure provider
is to maximise profits, by accommodating as many users as
possible and reducing the resource usage and associated cost.
Existing data virtualization techniques reduce resource usage
by merging data requests, however, they do not consider the
QoS requirements of the requests, which, in our view, need
to be taken into account in a shared WSN. We developed
JUDISHARE, a QoS aware request-merging mechanism that
allows same source sensing requests to reuse communication
flows, if they have matching QoS requirements. JUDISHARE

runs on a central network controller and relies on a Virtual
Network Embedding algorithm to map requests to network
resources. Through simulations we validated that JUDISHARE,
by merging communication flows, greatly reduces the quantity
of resources used in the network. This, in turn, allows more user
requests to be accommodated. The most significant finding is
that JUDISHARE, by merging requests, can break the limitation
imposed by the network sink of a maximum of 50% communi-
cation quota and can push the supported communication quota
to even more than 100% of the sink’s capacity. Moreover, using
real nodes, we investigated the impact that flow merging, i.e.,
increasing packet rate, has on a flow’s end-to-end reliability,
and concretely demonstrated that for packet rates of up to
100pkt/s the QoS is not affected. A practical use of JUDISHARE
would be its integration with a scheduling mechanism in a
system where network-wide decisions are taken based on QoS
application requirements and the current network state.
Acknowledgements. This work was funded by Science Foun-
dation Ireland (SFI) under grant 13/IA/1885.

REFERENCES

[1] R. Muller and G. Alonso, “Efficient Sharing of Sensor Networks,” in
Proc. of the Int. Conf. on Mobile Ad-hoc and Sensor Systems (MASS),
2006.

[2] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual Network Embedding: A Survey,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 4, 2013.

[3] R. Katona, V. Cionca, D. O’Shea, and D. Pesch, “Exploring the Econom-
ical Benefits of Virtualized Wireless Sensor Networks,” in Proc. of Int.
Sym. on Personal, Indoor and Mobile Radio Communications (PIMRC),
2017.

[4] N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman, ‘“Multi-
query Optimization for Sensor Networks,” in Proc. of the Int. Conf. on
Distributed Computing in Sensor Systems (DCOSS), 2005.

[5] “Service-Centric Network for Urban Scale Feedback Sys-
tems (SURF),” Accessed: 2017-09-21. [Online]. Available:
http://www.nimbus.cit.ie/portfolio-items/surt/

[6] S.R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
An Acquisitional Query Processing System for Sensor Networks,” ACM
Trans. Database Syst., vol. 30, no. 1, 2005.

[71 S. Xiang, H. B. Lim, K. L. Tan, and Y. Zhou, “Two-Tier Multiple
Query Optimization for Sensor Networks,” in Proc. of the Int. Conf. on
Distributed Computing Systems (ICDCS), 2007.

[8] A. Tavakoli, A. Kansal, and S. Nath, “On-line Sensing Task Optimization
for Shared Sensors,” in Proc. of the Int. Conf. on Information Processing
in Sensor Networks (IPSN), 2010.

[9] P. Corbalan, R. Marfievici, V. Cionca, D. O’Shea, and D. Pesch, “Into
the SMOG: The Stepping Stone to Centralized WSN Control,” in Proc.
of the Int. Conf. on Mobile Ad-hoc and Sensor Systems (MASS), 2016.

[10] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-Time Scheduling for
WirelessHART Networks,” in Proc. of Real-Time System Symposium
(RTSS), 2010.

[11] J.Lu and J. Turner, “Efficient Mapping of Virtual Networks Onto a Shared
Substrate,” WUSTL, Tech. Rep. WUCSE-2006-35, 2006.

[12] F. Osterlind and A. Dunkels, “Approaching the Maximum 802.15.4
Multihop Throughput,” in Proc. of the Workshop on Embedded Networked
Sensors (HotEmNets), 2008.

[13] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “An Empirical Study
of Low-power Wireless,” ACM Trans. Sens. Netw., vol. 6, no. 2, 2010.

[14] T. Istomin, R. Marfievici, A. L. Murphy, and G. P. Picco, “TRIDENT:
In-field Connectivity Assessment for Wireless Sensor Networks,” in Proc.
of the Extreme Conf. on Communication and Computing (ExtremeCom),
2014.

[15] M. Zimmerling, “End-to-end Predictability and Efficiency in Low-power
Wireless Networks,” Ph.D. dissertation, ETH Zurich, Swizerland, 2015.

