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Abstract—In the 2.4 GHz unlicensed spectrum, the coexis-
tence of WiFi, Bluetooth and IEEE 802.15.4 devices generates
increased channel contention. Notably, low-power wireless net-
works experience packet loss and delays due to interference.
To improve the performance of low-power wireless networks
under interference, we propose a data driven proactive approach
based on interference modeling for white space prediction. We
leverage statistical analysis of real-world traces from two indoor
environments characterized by varying channel conditions to
identify interference patterns. We characterize interference in
terms of Inter-Arrival Time (IAT) and number of interfering
signals and use a Gaussian Mixture Model (GMM) to accurately
estimate the interference distribution as observed by the low-
power wireless nodes. Then, we use a Hidden Markov Model
(HMM) for white space prediction. Our validation w.r.t. real-
world traces from two environments show that our GMM model
can estimate interference with an accuracy higher than 94.7%.
Moreover, the white space prediction evaluation shows an average
accuracy of 97.7% and 89.5% across the two environments.

Keywords-Cross Technology Interference, low-power wireless
communication, wireless sensor networks, interference modeling,
white space, predictive models

I. INTRODUCTION

Wireless communication systems operating in unlicensed
radio spectrum, such as the 2.4 GHz ISM band, suffer from
Cross Technology Interference (CTI), which is the overlapping
of transmissions from different systems in time and frequency.
The interference occurs due to the broadcast nature of wireless
transmissions of co-located devices of different technologies
such as IEEE802.11 (WiFi), IEEE802.15.1 (Bluetooth) or
IEEE802.15.4 and who cannot coordinate their transmissions.
CTI creates packet losses, increases channel contention which
increases the delay, and ultimately under-utilizes the scarce
frequency spectrum [1], [2].

These problems are exacerbated for the IEEE802.15.4 based
low-power wireless networks, our focus in this paper. In the
presence of the interference, low-power wireless nodes need
to adapt to changing interference patterns and adjust their
transmission schedules in order to avoid interfering transmis-
sions and maximize the reliability of their communication. To
achieve this, nodes need to acquire a detailed understanding
of the surrounding interference through interference power
measurements. Using these measurements, nodes can then pa-
rameterize interference estimation and white space prediction
models in order to schedule their channel access or tune their
communication protocols accordingly.

Recent solutions [3] provide white space prediction using
Pareto models, relying on the assumption that interfering
data traffic exhibits heavy-tailed distributions. However, our
interference traces contradict this assumption. We accounted
for this aspect in our previous approach [4], and used a com-
bination of a 2nd order Markov Modulated Poisson Process
(MMPP(2)) model for interference estimation and a Hidden
Markov Model (HMM) for white space prediction. Despite the
encouraging results, our approach was validated in a limited
set of settings.

In this paper, we exploit a larger set of real-world data
traces to create models for both estimating the interference
and predicting white spaces. We characterize and analyze the
traces using the mean interference Inter Arrival Time (IAT) and
the number of interference signals in a slot of fixed duration.
The analysis revealed: i) interference traces of arbitrary
distribution, and ii) the presence of peak and off-peak patterns.
The first motivated us to evaluate the potential of a Gaussian
Mixture Model (GMM) for modeling the interference, while
the second led to the necessity of using two interleaved models
to account for the observed patterns. Then the estimated inter-
ference generated with the GMM is used as input for a HMM
to predict white spaces (i.e., when the communication channel
is interference FREE), so as to allow low-power wireless nodes
to better schedule their transmissions.

The accuracy of our GMM-based interference estimation
model is evaluated w.r.t. the ground truth traces. Our results
show that the accuracy we obtain with our approach, over
94.7% in all tested cases, is significantly superior to the
state-of-the-art approaches. The accuracy of the white space
prediction is 97.7% and 89.5% in the two tested environments.
Moreover, when the white space prediction is used by an
application to schedule its transmissions, the Packet Loss Ratio
(PLR) is 2.3% under moderate interference and 10.5% under
heavy interference.

The rest of the paper is organised as follows. We concisely
summarize the characteristics of the collected interference
traces in Section II. Our approach is described in Section III
and evaluated in Section IV. We discuss limitations of our
models and explore possible future work in Section V. We
end the paper by surveying the related work in Section VI,
followed by brief concluding remarks in Section VII.



II. TRACES

The central pillar of our paper are the traces acquired in
real-world environments. Therefore, the first contribution of
this paper is the analysis of a large set of interference traces.
The location of the experiments was chosen to cover different
interference conditions. The design of the data traces collection
was informed by our interest in understanding the interference
and its short- and long-term, channel and location variations.

A. Measuring the Interference

Location. Our study areas are two typical indoor environ-
ments: OFFICE and HOME, covering different conditions of
interference. The first is an office building, while the other is
a student dormitory exhibiting more bursty traffic.
Hardware/software platforms. The interference measure-
ments have been acquired by TMote Sky nodes, equipped with
the ChipCon2420 radio chip compliant with IEEE802.15.4.
Each node was connected to the USB port of a PC. To
enable fast interference detection, we used the Clear Channel
Assessment (CCA) and Start of Frame Delimiter (SFD) pins
of the CC2420 transceiver, leveraging the experience from [3].
In this case, when a signal above the CCA threshold (i.e.,
−77 dBm, the default value used for the CC2420 transceiver)
is detected, the CCA pin goes low indicating a busy channel,
while the SFD pin high indicates the start of an incoming
IEEE802.15.4 packet. We captured the hardware interrupts of
the two pins, with both CCA and SFD low indicating the
presence of an interference signal. When this occurs, a packet
is sent from the node to the PC, it is timestamped and stored
for future processing and analysis.
Data collection execution. The main findings reported in this
paper were gathered in three experimental campaigns. The
FIRST and the SECOND were performed in OFFICE. During the
FIRST we deployed three nodes at the same location between
two WiFi APs (Access Points) detecting the interference on
IEEE802.15.4 channels 13, 18 and 23. For the SECOND,
we interleaved the three nodes and the APs, and used only
channel 18. These choices allowed us to explore interference
traces from IEEE802.15.4 channels overlapping with different
WiFi channels and different characteristics of the WiFi traffic.
The collection of traces was executed for 24 hours, during a
working day of the week, from 1:00PM or 4:00PM. For the
THIRD campaign, a single node was used to collect traces on
channel 18 from OFFICE and HOME. As the goal was to assess
the interference for long-term, we ran the campaign for two
weeks, during September 12–26, 2017.

B. Interference Characterization

Methodology. We recall that our goal is to predict white
spaces for the low-power wireless networks in the presence
of interference. For this, we divided the time axis into slots
of 100 ms duration. We empirically determined that higher
values of the slot length induce high accuracy in prediction but
reduce the throughput of the application. Therefore, 100 ms
turned out to be a good trade-off for both. Note that we define
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(a) Burst arrivals.
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(b) Scattered arrivals.

Fig. 1: False discovery of BUSY periods.

a white space as the length in time in which an IEEE802.15.4
packet and its ACK can be transmitted without preemption.
Since we use time-slots, the lower and upper boundaries
of the length of a white space are 8.512 ms and 100 ms
respectively. We characterized the traces in terms of mean
IAT and number of arrival signals per slot statistics. Although
mean IAT is the most directly informative statistical property
of the interference trace, if used alone to characterize the traffic
within a slot, leads to an increase in the false discovery rate
of bursts of interference signals (BUSY periods).

The intuition behind this behavior is shown in Fig. 1. For
example, in a 100 ms slot, three interference signals can
arrive in a burst (e.g. small mean IAT of 3 ms) or scattered
(e.g. large mean IAT of 20 ms). We define an IAT threshold,
THIAT = 8.512 ms, the maximum time on air for a 127
bytes IEEE802.15.4 packet and its ACK transmitted at a rate
of 250 Kbps, in order to decide the state of the channel,
BUSY or FREE. In our example, during the bursty arrivals,
the channel is incorrectly identified as BUSY, while during the
scattered arrivals the channel is correctly identified as FREE.
During a 100 ms slot, a node can send 11 packets, considering
the 8.512 ms time on air. If, in each 8.512 ms sub-slot an
interference signal arrives, the slot is identified as BUSY. In
this respect, the number of signal arrivals is key in reducing
the false discovery rate of the BUSY periods. Therefore, a
threshold for the count of signal arrivals per slot, THcount ,
along with the THIAT , can be used to decide the state of the
channel as follows:

Channel =

{
BUSY, if IAT ≤ THIAT and count ≥ THcount

FREE, otherwise

In our example from Fig. 1, the combined use of the two
thresholds, correctly identifies the slot as FREE for both cases.
Once the interference traffic trace is characterized in terms
of mean IAT and number of interference signal arrivals per
slot, we compute the two-dimensional probability distribution
of the trace. Next, the hourly traffic patterns are identified
by comparing the distribution with a one-hour peak-traffic
distribution extracted from the trace. By comparing the trace
with peak-hour traffic, we are able to classify peak traffic hours
and off-peak traffic hours. To this end, Normalized Cross-
Likelihood Ratio (NCLR) [5] was used with values of NCLR
close to zero indicating highly similar distributions. Thus, peak

TABLE I: NCLR comparison of the interference traces from
FIRST and SECOND.

FIRST SECOND
Channel 13 18 23 Location 1 2 3

13 0 0.78 0.22 1 0 0.12 0.88
18 0.78 0 1 2 0.12 0 1
23 0.22 1 0 3 0.88 1 0



Fig. 2: Probability distribution function of traces from FIRST on channel 13 (left), 18 (center) and 23 (right).

Fig. 3: Probability distribution function of traces from SECOND at location 1 (left), 2 (center), and 3 (right).

(a) First week OFFICE. (b) Second week OFFICE. (c) First week HOME. (d) Second week HOME.

Fig. 4: Probability distribution function of traces during THIRD from OFFICE and HOME.

and off-peak traffic hours can be identified from the trace,
which in turn are useful for training the model. A threshold
value of 0.5 for NCLR is used to distinguish among the two.

Next, we characterize the interference traces in two ways.
The first is to compute the probability density function (PDF)
of the interference traces w.r.t. their mean IAT and number
of signal arrivals, as shown in Fig. 2, 3, and 4. The other
is to compute the NCLR for traces from the same campaign,
from different channels (FIRST), locations (SECOND) or weeks
(THIRD).

FIRST. Through the PDF lens, see Fig. 2, it appears like
the interference on channel 13 and 23 is similar. This is
further confirmed by the low value of NCLR = 0.22 in
Table I. On the other hand, the interference on channel 18
is different. We conjecture that this is a combined effect of
the IEEE802.15.4 channels overlapping with different WiFi
channels and being interfered by different APs. In our OFFICE
building environment the APs channel allocation is dynamic.

SECOND. The location of the nodes induces different trends
in their PDFs, in this case location 1 and 2 show similar
behavior, as shown in Fig. 3. This can also be seen in Table I
with NCLR = 0.12, and explained by different interference
characteristics induced by the position of the nodes in the
proximity of two different APs (i.e., location 1 and 2 are close

to AP1, while 3 is close to AP2).

THIRD. Fig. 4 shows the results from the THIRD campaign.
A few trends are clearly identifiable. First, the quantity of the
traffic increases as one progresses from OFFICE to HOME. The
trend is more marked during the second week. Second, the
traffic in HOME is more bursty than OFFICE, the PDFs show
high probabilities in the bursty zone, mostly due to the video
streaming done by students in HOME (i.e., student dormitory).
We now turn our attention to variations induced by the
interleave of night and day. Fig. 5 shows the NCLR obtained
from the comparison of 1-hour peak trace with each 1-hour
interference trace for both environments. In OFFICE the 1-hour
peak trace represents the most busy traffic period during the
day, while for HOME during the night. In the OFFICE, Fig. 5a,
we easily identified patterns in the interference distribution
over time of day and week-ends. The regions with high NCLR,
match the outside of office hours (7:00-22:00) time and the
week-ends (19:00 Saturday-7:00 Monday) when there is no
activity in the OFFICE building, therefore less interference.
Moreover, an increase in the interference, with NCLR decreas-
ing close to zero, can be observed during the busiest office
hours, 10:00-11:00 and 13:00-15:00. Interestingly, Thursday
night of the first week and the week-end days of the second
week, show an increase in the interference, that we ascribe to
a set of experiments run in the OFFICE building. In HOME, the



(a) OFFICE.

(b) HOME.
Fig. 5: Traffic patterns in OFFICE and HOME for two weeks.

variations over time appear to be somewhat dependent on night
(i.e., off-peak between 23:00 and 9:00) and day variations, but
are not as clearly marked as in the OFFICE. Also, in HOME the
range of variations between FREE and BUSY periods is more
dramatic, while the BUSY periods are smoother (i.e., longer
bursty interference periods) than in OFFICE. These are the
effects of more users and devices (WiFi/Bluetooth/microwave
ovens) in the students HOME than OFFICE, plus no strict access
time policies.

In a nutshell, the observations from our experimental cam-
paigns show that the environment in which the low-power
wireless nodes are immersed, the location where the nodes
are placed, and the channel used, have an impact on how
the interference is perceived. Moreover, these observations
directly inform modeling decisions, suggesting that at least
two models accounting for the peak and off-peak interference
patterns should be adopted.

III. MODELING APPROACH

Next, we build on the above analysis to exploit the set of
traces to create two models: i) for estimating the interference,
and for ii) predicting white spaces for low-power wireless
nodes in the presence of interference.

A. Interference Estimation

Model. The fundamental motivation for our modeling ap-
proach for estimating the interference is that the observed
traces display an arbitrary distribution and GMM models
can produce smooth estimations of arbitrarily shaped distri-
butions [6]. To this end, we use a GMM, whose defining
parameters are the number of components (M) and three
matrices: mixture component weights (W ), component means
(µ) and covariances (Σ). The former is a stochastic matrix
which determines the weight at which each Gaussian compo-
nent should model data, and µ and Σ define the mean and the
covariance of each component. In our approach, we use two
GMM models, for peak and off-peak periods.

The choice of the number of components (M) affects
the estimation accuracy. Moreover, each component (M) has
(Q) dimensions given by the number of features used to
characterize the distributions.

BUSY FREE
O1

O2a11 a22

a12

a21

Fig. 6: Hidden Markov model.

Parameters. In our case, the components are two-dimensional
(Q = 2), the interference traces are characterized by the mean
IAT and the number of signal arrivals per slot. The number of
components is estimated empirically, by comparing the GMM
model estimates w.r.t. the ground truth trace using Area Under
Curve (AUC) as metric. In Section IV we show how this is
done for our approach.
Training. Once the parameters are computed and set, the
model can be trained. The matrices (i.e., W , µ, Σ), of the
GMM model were estimated using the expectation maximiza-
tion (EM) algorithm. A diagonal covariance matrix Σ, the
most used in the literature, was adopted, requiring less samples
for training, and approximating full covariance using a linear
combination of diagonal covariances.

B. White Space Prediction
As discussed in Section I, the contribution we put forth

here is an approach for predicting transmission opportunities
for low-power wireless in the presence of interference. Next,
we describe how we exploit the output of the GMM model,
the estimated interference, for white space prediction. To this
end, we use a HMM model.

We adopt the notation from [4] to indicate the complete
parameter set of the HMM model: 1) hidden (unobserved)
states S = {FREE, BUSY}, correspond to the two different
regimes of the wireless channel; 2) initial state probabilities π;
3) observations O = {o1, o2}, correspond to the two features
used to characterize the interference, mean IAT and number
of signal arrivals per slot; 4) state transition probability matrix
A, models the evolution of the wireless channel as transitions
among the set of unobserved states; 5) observation probability
matrix B.

Fig. 6 shows a graphical representation of the HMM model,
with transition probabilities overlaid on the arrows showing
the state transitions (i.e., a11, a12, a21, and a22), and the
emission distributions for each state represented by the mod-
eled interference distributions corresponding to the BUSY and
FREE states of the channel. The model parameters A and B
are initialized using uniformly distributed probability matrices
while π is initialized for the data set under consideration, and
all are recomputed using the Baum-Welch algorithm [7]. In
addition, the training data used for the HMM is labeled as
FREE or BUSY with the help of the two thresholds, THIAT

and THcount , introduced in Section II-B. In our approach, we
use two HMM models, for peak and off-peak periods.

IV. PERFORMANCE EVALUATION

We validate our approach for white space prediction by:
i) conducting a statistical comparison between the interference



data traces (training set) we collected from the two indoor
environments and estimated traces from the GMM model, a
state-of-the-art Pareto model and from our previous proposed
MMPP(2) model; ii) comparing our prediction from HMM
model with a 0.5- and 1-persistent random access method and
our previous approach [4]. In our evaluation we use collected
traces from all campaigns.

A. Metrics

To establish the number of components for the GMM
model, we computed the AUC, searching for the optimal
operating point for the model while varying the number of
components, and minimizing the False Positive Rate (FPR),
and maximizing the True Positive Rate (TPR). To assess
the performance of our approach, we considered two metrics:
accuracy and FPR. The former is a measure of the predictabil-
ity of the model, while the latter provides an assessment of
the packet loss of the low-power wireless network when the
prediction mechanism is being used. All metrics are derived
from the elements of the confusion matrix in Table II, as
follows: TPR = TP

TP+FN , FPR = FP
FP+TN , and accuracy =

TP+TN
TP+FP+TN+FN .

B. Model Parameter Selection

GMM. The number of components was empirically identified,
varying it from three to ten and computing the AUC. The re-
sults indicated that seven components (M = 7) are enough for
a satisfactory accuracy of 99.9% of the estimated interference.
HMM. The training duration of HMM determines the accu-
rate estimation of the model parameters and, consequently,
the white space prediction. A 1-hour training set provides
statistical relevance for the channel behavior. The training trace
for peak and off-peak models are obtained by computing the
mean NCLR for the traces and picking the 1-hour trace closest
to this mean. The matrices that characterize the model, A
and B are initialized with uniformly distributed probabilities.
Moreover, the matrix π in the peak and off-peak models is
initialized using the proportion of FREE, BUSY slots from the
total number of FREE and BUSY slots.

C. Interference Estimation Validation

Our evaluation of the interference modeling is divided in
two parts. First, we assess the performance of the GMM model
with different interference characteristics. For this, traces from
all campaigns were used (i.e., channel 23 in FIRST, location 3
in SECOND, and first week from THIRD). Second, we compare
to the state-of-the-art, a Pareto model [3], and with our
previous approach based on an MMPP(2) model [4]. Traces
from the first week of the THIRD campaign were used.

We quantitatively evaluate the accuracy and FPR of the
estimated interference trace w.r.t. the ground truth trace. The

TABLE II: Confusion matrix.
Predicted

Actual TN FP BUSY

FN TP FREE

BUSY FREE

output of the GMM model is a trace characterized in terms of
mean IAT and number of signal arrivals per slot. To perform
our comparison, mean IAT and number of signal arrivals of
both traces (estimated and ground truth) were translated into a
channel state, BUSY and FREE, using the THIAT and THcount

thresholds during each time slot. From this, the confusion
matrix of the two channel state sequence is derived along with
the metrics. The results are shown in Fig. 7. One can see that
in OFFICE, during the 24 hours of the FIRST and SECOND
campaign, Fig. 7a and Fig. 7b, the accuracy of the interference
estimation is high, except from 10AM to 3PM in location
3 when the accuracy decreases as low as 82.8% and FPR
increases up to 43.4%. We argue that this behavior is induced
by the increase in the number of signal arrivals during those
hours, as shown in Fig. 8. During the first week of the THIRD
campaign, Fig. 7c and Fig. 7d, the accuracy of the estimation
is high in both environments, over 98%. Moreover, it is evident
that the GMM model can better estimate the behavior of the
interference in OFFICE than HOME. This can be explained
with arguments similar to those for the other campaigns. In
HOME, as depicted in Fig. 9, the interference is more bursty.
In OFFICE, the estimation accuracy is stable at 100%, except
during the burstiest traffic hours, 9AM on Monday and 11AM
on Friday, when the accuracy drops at 99.61% and 99.56%
respectively in the two weeks. On the contrary, HOME exhibits
much more frequent variations in accuracy and FPR, but the
accuracy does not decrease below 98%.

We now show that our GMM modeling approach for esti-
mating the interference provides more accurate estimates than
the state-of-the-art approaches, Pareto and MMPP(2). Table III
shows the results w.r.t. accuracy and FPR in predicting the
actual interference for both environments in THIRD. For each
different period in the life of the interference trace, we chose a
two hours test trace. The three periods in Table III correspond
to peak (day) and off-peak (night, week-end), the two off-
peaks exhibiting different characteristics (i.e., different NCLR
values).

The Pareto-based approach relies on the self-similarity
property of the traffic, meaning characteristics of the traffic are
preserved irrespective of scaling in time. Therefore, to ensure
a fair comparison with Pareto, we had to resort to at most a
two-hour test trace in which the traffic exhibits self-similarity.
The approach assesses the state of the channel upon the arrival
of an application packet, therefore, the white space prediction
probability is conditioned by this state.

Moreover, the performance of the MMPP(2) model depends
on the training duration x and the modeling duration factor k.
Here, we calibrated the MMPP(2) model for maximizing the
AUC value, and used k = 1, x = 240, 180, 300 s in OFFICE and
x = 420, 240, 540 s in HOME, for day, night and week-end.

Table III shows the results w.r.t. the ground truth in OFFICE
and HOME. We note that the GMM approach achieves the best
results, highest accuracy and lowest FPR, compared to the
alternatives across all combinations of environments, channels,
locations and time intervals. Moreover, GMM is slightly worse
in HOME than OFFICE, due to the more bursty interference.
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Fig. 7: GMM model accuracy and FPR across campaigns.

Nevertheless, the accuracy does not decrease below 99.42%
and the FPR is lower than 1.16%. On the other hand, through
the lens of both metrics, Pareto performs better in HOME than
OFFICE. Although Pareto’s accuracy does not go over 32.41%,
its FPR is low 5.99% during the busiest traffic periods in
HOME, arguably due to its distribution, i.e., Pareto models
high bursty traffic. Notably, MMPP(2) is better than Pareto
in correctly identifying the two states of the channel, BUSY
and FREE, translated into higher accuracy. The FREE state is
better identified, translated into high FPR. High accuracy and
high FPR in MMPP(2) can be attributed to high amount of
free slots than BUSY slots in the trace and MMPP(2) mainly
estimating the FREE slots.

D. White Space Prediction Evaluation

Next, we show that our GMM-HMM modeling approach
provides accurate predictions of white spaces and compare it
with two p-persistent channel access methods for p = {0.5, 1}
(i.e., transmission attempt is with probabilities 0.5 or 1 when
the channel is sensed as idle), and with our previous approach
based on the combination of HMM model with MMPP(2) [4].

Our performance metrics are accuracy, for the white space
prediction model, and Packet Loss Ratio (PLR), for an applica-
tion that uses the model to take decisions on when to transmit.
The white space prediction works as follows: when a packet
is ready to be transmitted, the GMM-HMM model produces
a sequence of BUSY and FREE channel states, from which the
closest 100 ms FREE slot is selected. Then, we compare the
state of the chosen slot against the corresponding slot of the
ground truth. A packet is marked as lost if the predicted state
is FREE while the ground truth shows BUSY. Note that the
GMM-HMM model predicts the closest FREE slot before the
next scheduled packet transmission, and if the model is unable
to predict a FREE slot, the current packet is considered as lost.

We report the HMM performance across the entire set
of traces, and investigate the impact on the reliability of a
staple data collection application ensuring variability in the
transmission interval, 1 s and 60 s, representative for high

TABLE III: GMM vs. alternative solutions in THIRD.
Period Metric OFFICE HOME

GMM MMPP Pareto GMM MMPP Pareto

W
ee

kd
ay Day Accuracy 99.82 86.86 16.71 99.42 68.94 32.41

FPR 0.08 98.19 6.51 0.04 97.27 5.99

Night Accuracy 99.98 87.95 18.26 99.72 86.54 19.21
FPR 0 99.34 8.28 1.16 99.53 8.15

Weekend Accuracy 99.96 97.17 8.59 99.81 86.18 18.64
FPR 0 98.86 8.53 0.39 99.32 7.21

and low data rate applications. For selecting the MMPP(2)
parameters and the training duration for the MMPP(2)-HMM,
we used the same procedure as in Section IV-C. Moreover,
we selected a uniform distribution for 0.5-persistent method
random numbers generation. Table IV shows the results w.r.t.
the ground truth in both environments. First, across both
environments and independent of the time of day/week, the
accuracy places our approach ahead of the other methods and
slightly (i.e., 3.06%) below the 1-persistent method in HOME
during weekdays. In OFFICE, we are better than 1-persistent as
we accurately predict both FREE and BUSY states, increasing
accuracy and decreasing PLR. Looking at the Table IV, one
can notice that accuracy and PLR, for both GMM-HMM and
1-persistent, sum up to 100%, because half of the confusion
matrix (i.e., TNs and FNs) is always zero.

Secondly, in OFFICE, our approach performs worst during
the day, with an accuracy of 97.71%, due to the high traffic
(i.e., low mean IAT, high number of signal arrivals). The
accuracy decreases more as we progress from OFFICE to
HOME, going as low as 89.44%. This can be explained with
arguments similar to those for the GMM performance, the
HOME exhibits more bursty interference and the model can
not account for the short-term channel variations. Thirdly,
through the lens of PLR, the environment induces different
trends: in OFFICE, our method performs slightly better than
all the others (i.e., maximum PLR is 2.29%), while in HOME
it is the worst with PLR values as high as 10.56%. Our
previous approach based on MMPP(2) model has low accuracy
being unable to accurately capture the characteristics of the
interference. Although 1-persistent random access method has
a high accuracy in both environments, it fails in HOME, always
predicting the channel as FREE while it is BUSY.

We now turn our attention to hourly variations of the
GMM-HMM model accuracy and application PLR across
all traces from our three campaigns, shown in Fig. 8 and
Fig. 9. In the OFFICE environment, channel 23, location 3 and
week 1, the off-peak GMM-HMM model has high accuracy
(≥ 97.1%) while the application has low PLR (≤ 2.9%). This
is also valid for the peak GMM-HMM model, except Thursday
(minimum accuracy 56.7%) and Monday (minimum accuracy
66.7%) in week 1, and on channel 23 (minimum accuracy
65%) and location 3 (minimum accuracy 58.3%). When we
look at HOME, the average accuracy, 88.3 ± 16.8%, is lower
than that of OFFICE, 98.3± 1.4%. The off-peak GMM-HMM
model in HOME performs in a similar way as that in OFFICE,



TABLE IV: Comparison of GMM-HMM prediction performance to alternative solutions.
Period Metric OFFICE HOME

GMM-HMM MMPP 0.5-p 1-p GMM-HMM MMPP 0.5-p 1-p

Weekday
Day Accuracy 97.71 74.31 50.69 96.94 90.76 63.54 50.69 93.33

PLR 2.29 3.19 3.01 3.06 9.24 6.67 6.58 6.68

Night Accuracy 99.72 65.07 50.83 99.58 89.44 75.00 49.17 92.50
PLR 0.28 0.53 0.27 0.42 10.56 7.74 8.90 7.50

Weekend Accuracy 100.0 87.92 50.76 99.51 92.29 67.36 51.32 89.51
PLR 0 0.55 0.41 0.49 7.71 10.13 9.32 10.49
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Fig. 8: GMM-HMM model performance prediction and the
PLR of a 1 s (top) and 60 s (middle) data rate applications in
FIRST and SECOND, hourly variations of interference (bottom).

minimum accuracy 56.7%. However, the performance of the
peak model in HOME is worse than that of OFFICE. These
observations can be explained with the following arguments:
i) the amount of hourly interference signal arrivals has an
impact on the accuracy of the prediction, e.g. across all
campaigns, the model exhibits high accuracy when the number
of interference signals is ≤ 2 × 105; ii) variations of the
interference signal arrivals has an impact on the accuracy of
the prediction, e.g. sudden and dramatic variations induce a
decrease in the accuracy; iii) sub-optimality of the HMM
model, which is good in characterizing the distributions and
channel state transitions but has difficulties in capturing the
variations of the interference in time. The impact of the amount
and the variations of the interference signals is more marked in
HOME than in OFFICE. This translates into lower accuracy and
higher PLR in HOME. Additionally, during the periods with
the most severe interference, the number of available FREE
slots is limited, going as low as 20% (i.e., limited transmission
opportunities).

V. DISCUSSION

The GMM-HMM model is a purely data-driven approach.
In its current implementation, our choice of slot length of
100 ms is motivated by the trade-off between the accuracy of
the model and the throughput requirements of the application
that uses the model to take transmission decisions. However,
we acknowledge that the throughput is only affected when the
model predicts BUSY while the actual channel state is FREE.
When training, the duration of our data trace was 1-hour. First,
for durations shorter than 1 hour, the collected interference
traces did not exhibit enough samples to properly capture both
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Fig. 9: GMM-HMM model performance prediction and the
PLR of a 1 s (top) and 60 s (middle) data rate applications in
THIRD, hourly variations of interference (bottom).

the FREE and BUSY states of the channel. Second, with few
training samples it is difficult to retrain the full parameter set
of both GMM and HMM models, and obtain a generic model
for the testing data trace.

In environments with dramatic and rapid variations in the
number of interference signals arrivals, two models (i.e., peak
and off-peak) are not enough to capture this behavior. There-
fore, to overcome this, the approach requires a continuous
assessment of the channel condition.

Finally, a practical use of the GMM-HMM approach would
be its integration with a MAC protocol where transmission
decisions are taken by leveraging the white space prediction.
Moreover, our GMM interference estimation model can be
used for emulating radio interference in testbeds.

VI. RELATED WORK

Detecting and classifying interference. Several works aim
to measure, understand the impact of interference on low-
power wireless networks, and classify interfering sources [8]–
[13]. Musaloiu and Terzis [13], use RSSI based features to
quantify the interference on all IEEE802.15.4 channels to
select the least interfered one. Noda et al. [8] compute the ratio
of channel idle and busy time for assessing channel quality
in the presence of interference. SpeckSense [9] classifies
RSSI bursts to characterize the channel as periodic, bursty
or a combination of both. SoNIC [11] uses information from
corrupted packets for interference source classification. These
works succeed in detecting and identifying interference but it
is not clear how these techniques are useful for autonomous
interference mitigation due to interferers diversity. TIIM [10]
makes a step further and extracts features from corrupted



packets to quantify the interference conditions instead of
identifying the interferer. Thus the interference condition can
be mapped to a specific mitigation technique. Nonetheless, an
implementation of these mitigation techniques is not provided.
CrossZig [12], the follow up work, contains an implementation
of an adaptive packet recovery and FEC coding to address
the problem. ART [14] proposes a probabilistic mechanism to
adaptively use CSMA according to real-time interference level
assessment done using packet delivery ratio (PDR) and fine-
tuning the trade-off between throughput and PDR. All these
solutions, however, are reactive, depending on the prevailing
channel conditions, and do not aim to predict the white spaces
through modeling, which is instead our goal in this paper.
Modeling interference. Creating lightweight models of inter-
ference is not a trivial task. Several researchers have proposed
models for channel occupancy [3], [15]–[18] and for emulating
interference caused by WiFi and Bluetooth [19]. A two-state
semi-Markov model for channel occupancy is defined in [15],
and exploited by each node to identify the less interfered
channel and to switch accordingly. In comparison, we do not
limit interference caused only by WiFi, but identify the white
spaces for a specific channel through modeling interference
in time domain. For modeling WiFi interference, Geirhofer et
al. [17] propose a semi-Markov model and its continuous-
time Markov chain, while Laganà et al. [18] enhance this
model with a local view component. This model considers the
limited detection range of sensor nodes and uses likelihood
maximization and neural networks for estimating model’s
parameters. Boano et al. [16], [20] define a two-state semi-
Markov model for channel occupancy and noise measurements
are used to measure the duration of the FREE and BUSY
instants, and compute their CDFs. Based on the longest BUSY
period, MAC protocols’ parameters are derived to meet the
application requirements. JamLab [19] models and regenerates
WiFi/Bluetooth/microwave interference patterns using sensor
nodes, considering both saturated (always BUSY) and unsat-
urated traffic scenarios. A Markov chain model is used for
saturated traffic and a probability mass function of empirical
data for the non-saturated one. In contrast, our goal is not to
emulate interference traffic but to estimate it, and for this we
use a GMM to capture the ambient interference conditions.

The work from [3] is closely related to ours, focusing on a
model-based prediction of the length of the immediate white
space when a ZigBee frame is ready to be transmitted in the
presence of WiFi interference. Depending on the length of the
white space, the MAC frame is split in order to minimize
collision probability. Nevertheless, continuous sampling of
the operating channel is required as the model’s parameters
are calibrated whenever there is a frame to be transmitted.
Moreover, their prediction is short-term in contrast to ours
which is long-term and provides more information about when
to transmit.

VII. CONCLUSIONS

In this work, we demonstrated that the combination of
accurate interference estimation offered by a GMM model and
reliable prediction of the wireless channel state enabled by
an HMM model yields unprecedented accuracy in predicting
transmission opportunities for low-power wireless networks.
We validated our interference estimation approach against real-
traces and state-of-the-art Pareto and MMPP(2) models, show-
ing superior accuracy in all cases. The prediction mechanism
was evaluated against 0.5- and 1-persistent random access
methods and a MMPP(2)-HMM model. Results show that
we can estimate interference with more than 94.7% accuracy
in all scenarios, while an application using our GMM-HMM
white space prediction for taking transmission decisions has
less than 2.3% PLR under moderate interference and 10.5%
PLR under heavy interference.
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